'cooperative learning' Search Results
Preservice Secondary Mathematics Teachers’ Actional Beliefs about Teaching Geometric Transformations with Geometer’s Sketchpad
preservice mathematics teachers' beliefs technology integration radical constructivist grounded theory (rcgt) actional beliefs geometer's sketchpad (gsp) geometric transformations...
Preservice mathematics teachers' beliefs about actions related to the use of the technological tools in teaching mathematics may affect how they are going to use them in their classroom activities. However, there is a limited evidence of what beliefs they hold on their intended actions of using technological tools in teaching mathematics. This study presents two preservice high school mathematics teachers' actional beliefs related to their intended actions in teaching geometric transformations (GTs) using Geometer's Sketchpad (GSP). The study comprised of a series of five task-based qualitative interviews with each of two senior undergraduate preservice teachers at a medium-sized public university in the Rocky Mountain Region of the United States. This study used a radical constructivist grounded theory (RCGT) with five assumptions—symbiosis, voice, cognition, adaptation, and praxis as a theoretical framework to guide the study process. The thematic findings of the study included four in vivo categories of their beliefs associated with actions of teaching GTs with GSP – assessment of student learning, engaging students in a group activity in exploring GTs with GSP, engaging students in individual activity in exploring GTs with GSP, and exploring GTs with GSP as 'suck it up and do it.' Pedagogical implications of these categories have been discussed.
0
On Categories of Mathematics Teachers’ Classroom Characteristics and Perceived Influence on Effective Mathematics Teaching in Secondary Schools in Plateau State, Nigeria
mathematics teaching characteristics effective learning understanding...
In this paper, the categories and influence of teachers’ classroom characteristics relative to effective mathematics teaching in secondary schools in Plateau state, Nigeria were examined. The aim was to see how students are assisted to learn mathematics from teachers engaging fully their professional practices fully. Exploratory and descriptive survey research methods were used to examine the trajectories. Sample for the study consisted of 60 trained mathematics teachers from secondary schools in Plateau state that participated in a week-long capacity building workshop on teaching new concepts from secondary school mathematics curriculum in Nigeria organized recently by the state chapter of the Mathematics Association of Nigeria. Purposive sampling technique was used to select the sample based on the fact that the study targeted only mathematics teachers that participated in the capacity building workshop. A 52-item TCCQ on teacher effectiveness, interest, rapport with students, etc. was used for data collection. The findings from the study revealed that mathematics teachers’ ability to teach effectively is significantly associated with many factors including the use of different strategies (χ2=52.75), revision (χ2=47.13), good lesson plans (χ2=53.93) and being friendly with students (χ2=35.66). There was no significant variation regarding how the characteristics influence teacher effectiveness based on qualification (F2, 58=0.689). Among other things, therefore, it was recommended that teachers should be committed to teaching mathematics effectively in the classroom by taking cognizance of the variables especially designing of good lesson plans and previous knowledge irrespective of their qualifications.
0
Bearing/Distance Problems in Mathematics: Teachers’ Construction Efficacy in the Secondary School in Plateau State, Nigeria
in-service teachers bearing/ distance mathematics teaching secondary school...
In Nigeria, most teachers among other things lack the necessary teaching skills, and mastery of subject matter for effective teaching of mathematics at the secondary school level. These deficiencies have often resulted in high and repeated failure rates in national and standard mathematics examinations. The present study investigated the ability of mathematics teachers to construct practical and realistic word problems in bearing and distance toward mitigating the deficiencies. The research methods adopted were exploratory and descriptive surveys due to the need to explore and analyze the abilities using quantitative techniques. Sample consisted of 292 (35.48%) mathematics teachers who took part in the in-service training workshop organized by the Mathematical Association of Nigeria (MAN) in Plateau state, Nigeria. Purposive sampling technique was used to select the sample that involved the workshop participants only. The instrument ‘construction of practical and realistic word problems in bearing and distance test (CPRWPBDT)’ was used for data collection while the analysis was carried out using simple percentages, mean scores and one-way ANOVA. The findings of the study among other things revealed that the mathematics teacher participants constructed practical and realistic word problems in bearing and distance within 91.67% completion rate, 70.45% of the problems constructed were within the context, at least 75% rate of correctness with little difficulties/errors was observed in sketching (65.90%), and reality (40.90%). The variations observed within the participants in the construction of the problems were statistically not significant. Thus it was recommended among other things that mathematics teachers should undergo regular in-service workshop training to help in developing essential skills themselves for constructing practical/realistic word problems in bearing and distance; and should avoid unnecessary errors for meaningful teaching and learning of bearing and distance.
0
Planning and Delivering a Cooperative Maths Lesson
cooperation in maths cooperative teaching techniques teaching problem-solving...
School education should not only provide students with content knowledge but also with effective skills that will be appropriate in their adult lives, such as the competence in solving problems individually or being able to work as a member of a team. Students should be active participants instead of passive listeners in their lessons. There is a wide variety of teaching methods that practicing teachers can choose from to make their lessons varied. The present article explains the outline of an experiment that was based on Spencer Kagan’s cooperative learning focusing on one particular lesson. The mathematics lesson was planned using cooperative teaching techniques and was taught in secondary mathematics education. We analyse how well cooperative learning can be used for improving participation and effective problem-solving in the classroom.
0
The Observed Impact – Implementing Inquiry – Based Learning at a Calculus Class
inquiry-based learning on-going formative assessment structure of a lesson pre-class assignment...
This study investigated how implementing inquiry-based learning (IBL) can be an effective tool for an instructor to conduct rich formative assessment. Many researchers have documented that IBL promotes active learning from students’ learning perspective. However, little research examines how IBL affects instructors’ teaching practice from teaching perspective. Based on the data collected from a Calculus II class, the author discussed how the structure of IBL class produced rigorous on-going formative assessment during classroom teaching from the three aspects: helping the instructor “see” student thinking; helping the instructor “see” the level of student understanding; helping the instructor catch teachable moments. The rigorous on-going formative assessment, in turn, helped change student classroom behaviors in terms of asking more questions, showing deep thinking, and gaining confidence.
0
The Effectiveness of The STEM Approach on Science Process Skills in Studying Reaction Rate
reaction rate science process skills stem approach...
The students' low science process skills are caused by learning that is still dominated by the teacher, so it is necessary to develop a learning approach that focuses students in the learning process. One approach that can be used is learning that integrates science, technology, engineering, and mathematics (STEM). This study aims to measure the improvement of students' science process skills that are integrated with the STEM approach on the reaction rate material. This research is a quantitative research with a pre-experimental design type, one group pretest-posttest with a sample of 30 students from class XI SMA Negeri 9 Pontianak, taken by random sampling technique. The data collection tool used is a subjective test of science process skills. The results showed that there was an effect of the STEM approach on the students' science process skills on the reaction rate material, with a score of 76.11, good criteria. Among the aspects of science process skills measured, including observation, classifying, calculating, predicting, inferring, and communication, the communication aspect of students experienced a significant increase from a score of 3.33 to 91.1. This study shows that the STEM approach to reaction rate learning effectively improves students' science process skills.
0
A Study of Students’ Self-Efficacy in Mathematics Performance Based on Bugis Ethnicity and Gender
bugis ethnic gender mathematics performance self-efficacy...
The study on mathematical performance was significant enough to be studied further to measure students' self-efficacy. Although studies on student self-efficacy in math performance from a gender perspective were abundant, studies on this relationship from the perspectives of ethnic culture and gender were scarce. Therefore, the objective of this study was to examine the self-efficacy of Bugis Junior High School students in solving math problems based on gender. The researchers used an algebra problem in the context of the Bugis ethnic culture. For this data set, two of 25 students at a public junior high school in Bone, South Sulawesi, Indonesia, were interviewed based on ethnicity and gender. Qualitatively, the triangulation technique was employed for data analysis. The study results revealed that male students outperformed girls in terms of self-efficacy, namely magnitude, strength, and generality, in math performance. Furthermore, female students had lower self-efficacy in terms of confidence, supportive experience in completing math tasks, and confidence in their ability to complete math tasks in similar or different contexts, compared to male students, who had higher self-efficacy. This result provided new knowledge by exploring the characteristics of students' self-efficacy by integrating ethnicity and gender.
0
Problem-Solving Models Using Procedural Knowledge in Solving Mathematics Problems of Junior High School Students
mathematics model problem solving procedural knowledge...
The ability of students to build problem-solving models using procedural knowledge can be viewed from several aspects, including Mastery of Mathematical Problem Solving (MPS), understanding concepts and application of concepts, the relationship between learning outcomes of mathematics and interest in learning, and examine the contribution of the ability to understand concept problems, the application of concepts to the ability of MPS, as well as student difficulties and some of the advantages of students in solving problems. This experimental study aims to explain the effect of the MPS model using procedural knowledge on solving mathematical problems for Junior High School Students (JHSS). The findings showed that 1) The MPS method using procedural knowledge significantly improved learning outcomes, but the mastery of MPS for JHSS was still unsatisfactory. 2) MPS teaching could still not improve meaningful learning outcomes. However, when JHSS applied the concepts, calculations, and problem-solving aspects, MPS teaching improved meaningful learning outcomes. 3) Students' interest in learning mathematics in the two sample classes was classified as positive. Shortly, MPS teaching accustoms students to think systematically and creatively and not just give up on the problems they face.
0
Undergraduate Students' Attitudes and Mathematical Reasoning During the Pandemic: The Mediating Role of Metacognitive Awareness
attitude mathematics reasoning metacognitive awareness undergraduate...
During the Covid-19 pandemic, this study investigated the role of metacognitive awareness as a mediator in the correlation between attitude and mathematical reasoning among undergraduates who are first year university students. These studies distribute mathematical reasoning assessments, metacognitive awareness questionnaires, and attitude surveys as research data. One hundred eighty-four undergraduate students from one public institution in Malaysia's Klang Valley area participated in the research. The impact of metacognitive awareness on attitude and mathematical reasoning was studied using Version 25 of the Statistical Packages for the Social Sciences. The findings indicated that undergraduate mathematics and science education students excelled in non-mathematics and science education students in mathematical reasoning capacity. According to the findings, undergraduate mathematics and science education students had good metacognitive understanding and used more approaches in mathematical reasoning assessment. Further study implies that more research should be conducted to assess different demographics, such as institute training teachers' metacognitive awareness and attitude towards mathematical reasoning.
0
Impact of the African Institute for Mathematical Science Teacher Training Program on Students’ Interest to Learn Mathematics and Science, Rwanda
continuous professional development innovative methodologies mathematics and science-education peer learning students’ industry visits...
This study examined the impact of the Rwanda African Institute for Mathematical Science, Teacher Training Program (AIMS-TTP) on 228 secondary school students’ interest to learn Mathematics and science taught by 7058-trained teachers over 5-years across 14 districts. Students were exposed to various AIMS-TTP interventions, including industrial visits, science hours, and international day for women and girls in science, mathematics competition, robotics and mathematics challenge, and the Pan African Mathematics Olympiad (PAMO). A survey research design was employed to collect data about students’ interest to learn Mathematics and science, and data on students’ choices of combinations were obtained from the National Examination and School Inspection Authority (NESA) for the academic years 2017 to 2022. Data analysis using bivariate correlation and regression analyses revealed a positive and significant relationship (p<.05) between AIMS-TTP interventions and students’ interest to learn Mathematics and science. Besides, linear regression model indicated that hands-on activities, exposure to mathematics and science role models, science hour and smart classroom were the best predictors of students’ interest to learn mathematics and science (β=.197, p< .05; β=.217, p<.05; β=.234, p< .05; and β=.218, p<.05 respectively). They contributed 66.7 % (Adjusted, R2 = .667, p < .05) of the variance in students’ interest in learning mathematics and science. The AIMS-TTP interventions significantly improved students’ interest to learning mathematics and science. Recommendations include comprehensive training programs with direct student engagement, diverse competitions, and ongoing teacher support through professional development. Future research should focus on students’ STEM interest in Technical, Vocational Education, and Training schools.
0
Relationship Between Teaching Styles and Mathematics Achievement of Ibadan North Secondary School Students: Practical Application of Peer-Cooperative Learning to Improve Retention of STEM Majors
conventional learning cooperative learning instructional strategies peer tutoring stem...
Teachers and teaching styles are two important factors influencing students’ academic performance. In this action research study, we investigated the differential effectiveness of two teaching methods, conventional learning (CL) and peer-cooperative learning (PCL), on students’ academic performance in fractions. A sample of 120 tenth grade mathematics students from Ibadan North Local Government Area of Oyo State in Nigeria was used for the study. The students were selected from three different secondary schools and grouped into two groups: the experimental (PCL) group and the control (CL) group, each having 60 students. A sample of 5 multiple-choice objective and 5 theory test questions titled Fraction Performance Test (FPT) was used to measure their academic performance after the treatment, and the assessment test scores were recorded. Descriptive statistics of the mean were used to answer the research question, while the two-way ANOVA technique was adopted for testing the research hypothesis at an alpha of 0.05. Summarily, the F (3, 116) statistic (= 8.55, p < .001) indicates significant differences in the effectiveness of the teaching methods. The mean scores also reveal that peer-cooperative learning was more effective than the conventional teaching approach. While the former proved to be a more efficacious treatment for female students, the latter was more suitable for male students. We recommend that different approaches be attempted by teachers, and the most effective in overcoming students’ resistance to learning and improving their academic performance be adopted.
0
Flipped Classroom Model: Minimizing Gaps in Understanding Mathematical Concepts for Students with Different Academic Abilities
academic abilities flipped classroom gaps in understanding concepts problem-based learning...
Each student has a different amount of time to fully understand information, students with high academic ability (UA) need less time than students with low academic ability (LA). Teachers should apply learning models that can facilitate their study time according to their individual needs. The aim of this research is to assess which learning model is most optimal in reducing the gap in understanding mathematical concepts between UA and LA students. Apart from that, this research also evaluates the effectiveness of implementing the flipped class (FC) model in increasing students' understanding of mathematical concepts, compared to the problem-based learning (PBL) model and conventional learning models. The research method used was the N-Gain Test and ANCOVA. The research results show that the FC model is the most optimal in reducing the gap in understanding mathematical concepts between LA and UA students. In addition, both FC and PBL models have proven effective in increasing students' understanding of mathematical concepts when compared to conventional models. Future research could consider combining the FC model with PBL or other learning models to see whether combining these models can improve students' understanding of mathematical concepts more significantly.
0
Understanding Problem-Based Learning and its Application in Learning Mathematics Concepts Among Pre-Service Teachers
mathematics education problem-based learning small-group activity...
Learning to teach mathematics has become crucial since its application in real life cannot go unmentioned. The desire of mathematics education researchers to make mathematics concepts easier for pre-service teachers to easily understand has attracted attention. This has become indispensable since after college, pre-service teachers are deployed from K-12 to assist learners in understanding mathematics concepts. The study aimed to ascertain how improvement in the learning of mathematics concepts using the Problem-based learning (PBL) approach could be understood and/or explained among pre-service teachers. This was viewed in two folds: how improvement in learning outcomes using the PBL approach could be explained; and how pre-service teachers’ disposition about the PBL could be explained/understood. Exploratory case study design involving qualitative and quantitative data was concurrently gathered and used. This involved the use of data collection instruments such as focus group discussion, pre-post-test scores, PBL observation protocol, and PBL disposition questionnaire. The study showed that the PBL method improved the learning of mathematics concepts among pre-service teachers. Pre-service teachers also showed a positive disposition (interest, belief, and attitude) toward the PBL intervention. The authors advocated for the conduct of a longitudinal study to understand the direction of change over time.
0