logo logo European Journal of Mathematics and Science Education

EJMSE is is a, peer reviewed, online academic research journal.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

RHAPSODE
Eurasian Society of Educational Research
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK
RHAPSODE
Headquarters
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK

Volume 5 Issue 2 (June 2024)

...

This paper aims to examine the trends around research in science teaching following the outbreak of the COVID-19 pandemic. This event had a significant impact on education institutions, as it led to the shift to online learning that challenged educators in terms of planning, implementing, and dealing with issues such as the deteriorating mental and physical health of students. This is reflected in the trends of researchers. Contemporary trends around science teaching seem to focus on new teaching practices, modes, areas of investigation, and the impact of modern technology. However, there is limited bibliometric research examining the impact of COVID-19 on science teaching. Hence, 12,840 documents published from 2020 onwards were collected and analyzed from the Scopus platform. The analysis depicted a general interest of researchers around this topic. Findings regarding the focus and area of study, country, and the yearly rate of publication are aligned with those that focus on the individual impact of the COVID-19 pandemic on teaching and science education. This can give insights to the general trends regarding the future of science teaching.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.67
Pages: 67-79
cloud_download 107
visibility 289
0
Article Metrics
Views
107
Download
289
Citations
Crossref
0

...

In the domain of engineering education, the crucial role of mathematics, especially Calculus, cannot be overstated, as it lays the foundational groundwork for numerous sciences, technology, engineering and mathematics (STEM) courses. The integration of mathematics into STEM disciplines is achieved through the practical application of mathematical concepts in real-world scenarios or in conjunction with other STEM subjects, thereby enhancing the coherence of engineering studies and acting as a significant motivational catalyst for students. This paper presents an analytical narrative of a practical mathematics assignment, woven into the Calculus curriculum and other STEM courses from 2013 to 2018. It delves into the potential impacts of these practical assignments on student performance and attitudes by evaluating data sourced from final exam scores and anonymous course surveys, both before and after the intervention period. Through the analysis of an extensive dataset comprising 1526 final exam scores, this study endeavors to make a substantive contribution to Future Technology Studies (FTS), focusing on the strategic harmonization of mathematics and STEM courses to enrich the educational experience and foster a more cohesive and applied learning framework in these disciplines.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.81
Pages: 81-91
cloud_download 61
visibility 311
0
Article Metrics
Views
61
Download
311
Citations
Crossref
0

...

This paper derives from a large research project focusing on mathematics and science assessment of student learning in three high-need, rural, and urban secondary schools in Manitoba, Canada. The study employed qualitative methods of semi-structured interviews and classroom video recordings of teaching practice experiences of 12 mathematics and science teachers, with the purpose that explore how authentic assessment forms assist effective teaching to monitor and motivate student learning achievement and growth. The results indicate that about 67% (eight out of the twelve of the participants) of the research participants practice the traditional mode of standard assessment that consists of multiple forms of questioning. The participants' rationale relates to speedy evaluations of student work, preparing feedback reports to parents and students, and objectivity of the assessment process. The other 33% (four out of twelve of the participants) of participants practice authentic assessment that concentrates on: (1) Allowing students to apply what they have learned rather than testing their ability to memorize and regurgitate concepts, (2) Allowing students to personalize their knowledge and values, (3) Encouraging group project-based learning and with the use of rubric for evaluating and monitoring, (4) Promoting deep learning to become life-long learners, (5) Recognizing, acknowledging, and validating diversity in student learning styles, interests, and aspirations, and further, authentic assessment is an excellent opportunity to apply communicative technologies such as podcasts and webinars in learning and undertaking investigations in mathematics and science learning. Furthermore, some participants asserted that authentic assessments are time-consuming, labor-intensive, and resource-demanding, aside from the limited resources and lack of training, which are some of the challenges of implementing authentic assessment. Other participants stated that all teachers must be familiar with using all assessment tools. The paper concludes that the principal plays a critical instructional leadership role in a school-wide implementation of authentic assessment.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.93
Pages: 93-104
cloud_download 89
visibility 303
0
Article Metrics
Views
89
Download
303
Citations
Crossref
0

Use of Magic Tricks as Analogies in the Science Classroom

analogies magic tricks science instruction

Danny Rudnick , Sarah B. Boesdorfer


...

Science, magic, and education have always been linked, from science-based magic shows to teachers presenting demonstrations as magic tricks to capture their students’ interest and provide a mnemonic reference for the topics under discussion. Magic as an art form is also often used to convey information or act as an analogy for invisible phenomena. This study examined how the use of a magic effect designed as an analogy for active and passive transport in cells affected student scores and perception of the activity when compared to a standard story analogy in a high school integrated science course. To determine this, students participated in either a magic-based analogy activity (MBAA) or a concrete story-based analogy activity (SBAA), and then data was collected and analysed using a pre-test/post-test for the content and a Likert-scale anonymous survey for the student perception of the activity. The MBAA was shown to be similar to the SBAA in helping students learn but had the added benefit of increasing students’ reported engagement with the activity. This study shows how bringing magic into the science classroom can have a positive impact on student engagement and provides teachers with another option to support student learning.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.105
Pages: 105-120
cloud_download 75
visibility 339
0
Article Metrics
Views
75
Download
339
Citations
Crossref
0

Predicting Learning Interest among Taiwanese Students in the Context of Big Science Issues

big science covid-19 learning enjoyment learning interest socio-scientific issues

Brady Michael Jack , Chi-Chen Chen , Hsin-Hui Wang , Thomas J. Smith


...

Research shows that learning enjoyment in specific socio-scientific issues (SSI) plays an important role in predicting grade 10 students’ learning interest and learning enjoyment (i.e., genuine interest) in SSI subjects generally. However, it remains unexplored whether learning enjoyment also mediates a predictive effect of learning interest in a Big Science SSI of pressing contemporary global concern—COVID-19—on grade 12 high school students’ learning interest in SSI generally. The purpose of this study is to investigate how learning enjoyment may mediate the predictive effect of learning interest in the specific Big Science SSI of COVID-19 specifically on students’ learning interest in SSI subjects generally. Latent variable modeling using data collected from grade 12 students (N = 691) showed personal perceptions of learning enjoyment in SSI partially mediated the predictive effect of learning interest in the SSI of COVID-19 on learning interest in other Big Science SSI subjects. Implications for promoting among science educators and policy specialists the active development of students’ individual interests and involvement in other 21st century Big Science SSI challenges are forwarded. 

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.121
Pages: 121-133
cloud_download 72
visibility 261
0
Article Metrics
Views
72
Download
261
Citations
Crossref
0

...