'digital learning tool' Search Results
The Effect of a Change in Virtual Learning Environment on Innovative Digital Teaching Practice: A Case Study of Academic Staff in an Irish University
digital learning tool lecturer landscape pedagogical innovation teaching identity virtual learning environment...
This mixed-methods, investigative case study explores the experience of a virtual learning environment (VLE) change and its effect on the use of digital learning tools specifically, and teaching practice more generally, for chemistry lecturers at TU Dublin (Ireland) prior to pandemic of the coronavirus disease COVID-19. Initially, a questionnaire examined the different teaching identities the participating lecturers might have and how they relate to the literature. These identities were examined under the following themes: sense of achievement, motivational factors for innovation, innovation positioning, as well as social and organizational factors influencing the decision making. A visual approach of representing the questionnaire data, termed ‘Lecturer Landscapes’, was developed which uncovered new trends based on the biographical descriptors of the research population. Subsequent interviews led to a more detailed investigation of the themes noted in the questionnaire and the Lecturer Landscapes to more holistically capture the professional identity of each respondent. The lens of experience during a VLE change was used to frame each respondent’s professional identity in context. Overall, a VLE change does not have to effect teaching practice and can be experienced as a positive change in teaching and learning. It was also noted that innovation can only occur when specific, and individual, needs and problems are addressed and when personal development is promoted by intrinsic, rather than extrinsic, motivational factors.
0
Investigating ‘A’ Level Biology Teachers’ Content Knowledge on Biodiversity in Midlands Urban: A Case of Four Selected Teachers
biodiversity content knowledge competence-based curriculum teacher identity...
This paper reports on part of an ongoing large-scale research on the need to improve science teaching and learning through investigating the Pedagogical Content Knowledge (PCK) of biology teachers for the topic Biodiversity. Six factors have been seen to affect teacher PCK, i.e., content knowledge, knowledge of students, science teaching orientations, knowledge of assessment, knowledge of instructional strategies and knowledge of the curriculum. This research aimed to examine the teacher’s level of content knowledge (CK). A qualitative research paradigm was adopted, and a case study research design used. The case (unit of analysis) was Biology teacher CK, and the subjects were the four teacher participants purposively selected. Lesson observations, teacher interviews and learner questionnaires were used to collect data on teacher CK. A content knowledge analytical framework consisting of five constructs was designed and used to analyse the teacher CK and data triangulated with data collected from interviews and questionnaires. This research revealed that ‘A’ level Biology teachers’ CK vary from teacher to teacher depending on several factors which include teacher identity, planning, workshopping, and motivation among others. Of the four Biology teacher participants, two had adequate CK and the other two exhibited inadequate CK. Inadequate CK was attributed to lack of planning, non-exposure to workshops and lack of teacher motivation. Consequently, this research recommends supervision of teachers from school level to national level, a series of teacher workshops on the demands of the competence-based curriculum and constructive teacher identity as well as introduce factors that enhance teacher motivation. Further research on the content knowledge of Biology teachers in other learning areas is recommended.
0
Mathematics Teachers’ Geometric Thinking: A Case Study of In-service Teachers’ Constructing, Conjecturing, and Exploring with Dynamic Geometry Software
dynamic geometry geometric thinking mathematics teachers...
Many research studies have been conducted on students’ or pre-service teachers’ geometric thinking, but there is a lack of studies investigating in-service teachers’ geometric thinking. This paper presents a case study of two high school teachers who attended the dynamic geometry (DG) professional development project for three years. The project focused on the effective use of dynamic geometry software to improve students’ geometry learning. The two teachers were interviewed using a task-based interview protocol about the relationship between two triangles. The interviews, including the teachers' work, were videotaped, transcribed, and analyzed based on the three levels of geometric thinking: recognition, analysis, and deduction. We found that the participating teachers manifested their geometric skills and thinking in constructing, exploring, and conjecturing in the DG environment. The study suggests that the DG environment provides an effective platform for examining teachers' geometric skills, and levels of geometric thinking and encourages inductive explorations and deductive skill development.
0
Attitudes of Pre-Service Teachers on the Use of 3D Printing with Tinkercad in Science Education
tinkercad 3d printer science education attitude...
3D printer technology and 3D design are used in many fields and are gaining various uses day by day. It is seen that the quality of education and training has increased with the effective use of 3D technology in the education and training environment. This study aims to investigate the attitudes of Pre-Service Teachers about the use of 3D printer activities made with Tinkercad in science education. 43 science pre-service teachers participated in the study, which lasted 8 weeks. A mixed research method was used in this study. The problem-solving scale and the attitude scale towards the use of 3D printers in science education were applied to the pre-service teachers. To collect the research data, the attitude scale was applied as a pre-test and post-test. For Paired samples, a t-test was applied and analyses were performed. In qualitative studies, semi-structured student interview questions were applied. According to the findings of the study, there was a significant increase in students' positive attitudes towards the use of 3D printers in science education. Tinkercad and 3D printer trainings have been given and applications have been made within the scope of these trainings. There have been 6 activities related to 3D printers. Thanks to 3D printers, students have the opportunity to present creative ideas and things they imagine to life by making designs in their minds. It seems that abstract concepts related to the sciences are embodied with a 3D printer and turned into tangible objects. Examining a physical object makes it easier for students to identify mistakes they have made in designs. It is seen that they do creative and solution-oriented work against the problems they encounter. Thus, it is predicted that learning will be more permanent and effective.
0
Authentic Assessment for Motivating Student Learning and Teaching Effectiveness in Rural, High-Need Secondary Schools in Manitoba, Canada
authentic assessment conventional assessments instructional leadership investigative mathematics science learning...
This paper derives from a large research project focusing on mathematics and science assessment of student learning in three high-need, rural, and urban secondary schools in Manitoba, Canada. The study employed qualitative methods of semi-structured interviews and classroom video recordings of teaching practice experiences of 12 mathematics and science teachers, with the purpose that explore how authentic assessment forms assist effective teaching to monitor and motivate student learning achievement and growth. The results indicate that about 67% (eight out of the twelve of the participants) of the research participants practice the traditional mode of standard assessment that consists of multiple forms of questioning. The participants' rationale relates to speedy evaluations of student work, preparing feedback reports to parents and students, and objectivity of the assessment process. The other 33% (four out of twelve of the participants) of participants practice authentic assessment that concentrates on: (1) Allowing students to apply what they have learned rather than testing their ability to memorize and regurgitate concepts, (2) Allowing students to personalize their knowledge and values, (3) Encouraging group project-based learning and with the use of rubric for evaluating and monitoring, (4) Promoting deep learning to become life-long learners, (5) Recognizing, acknowledging, and validating diversity in student learning styles, interests, and aspirations, and further, authentic assessment is an excellent opportunity to apply communicative technologies such as podcasts and webinars in learning and undertaking investigations in mathematics and science learning. Furthermore, some participants asserted that authentic assessments are time-consuming, labor-intensive, and resource-demanding, aside from the limited resources and lack of training, which are some of the challenges of implementing authentic assessment. Other participants stated that all teachers must be familiar with using all assessment tools. The paper concludes that the principal plays a critical instructional leadership role in a school-wide implementation of authentic assessment.
0