logo logo European Journal of Mathematics and Science Education

EJMSE is is a, peer reviewed, online academic research journal.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

RHAPSODE
Eurasian Society of Educational Research
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK
RHAPSODE
Headquarters
College House, 2nd Floor 17 King Edwards Road, Ruislip, London, HA4 7AE, UK

' self-efficacy.' Search Results

...

In the domain of engineering education, the crucial role of mathematics, especially Calculus, cannot be overstated, as it lays the foundational groundwork for numerous sciences, technology, engineering and mathematics (STEM) courses. The integration of mathematics into STEM disciplines is achieved through the practical application of mathematical concepts in real-world scenarios or in conjunction with other STEM subjects, thereby enhancing the coherence of engineering studies and acting as a significant motivational catalyst for students. This paper presents an analytical narrative of a practical mathematics assignment, woven into the Calculus curriculum and other STEM courses from 2013 to 2018. It delves into the potential impacts of these practical assignments on student performance and attitudes by evaluating data sourced from final exam scores and anonymous course surveys, both before and after the intervention period. Through the analysis of an extensive dataset comprising 1526 final exam scores, this study endeavors to make a substantive contribution to Future Technology Studies (FTS), focusing on the strategic harmonization of mathematics and STEM courses to enrich the educational experience and foster a more cohesive and applied learning framework in these disciplines.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.2.81
Pages: 81-91
cloud_download 123
visibility 738
0
Article Metrics
Views
123
Download
738
Citations
Crossref
0

...

Recent studies in mathematics education have focused on students' geometric problem-solving abilities, self-regulation, and the problem-based learning (PBL) model. The goal of this study is to examine how well junior high school students' self-regulation and geometric problem-solving skills are enhanced by the PBL model. In this study, quantitative methods using a quasi-experimental design were used. The sample consisted of 45 students from Amanatul Ummah junior high school in Mojokerto, Indonesia. Five types of instruments were utilized to collect data for this research, namely Syllabus, lesson plans, student worksheets, Self-Regulation Questionnaire (SRQ), and Geometry Problem-solving Test (GPST). The outcomes of the N-Gain test demonstrated how well the PBL model works to help students develop their capacity for self-regulation and geometric problem-solving. Apart from that, there are some notable differences between the traditional technique and the experimental class that is taught using the PBL paradigm. It is advised that similar trials be conducted in the future with a larger population and sample size. In both public and private junior high schools, it is strongly advised that more research be done with a larger population and sample size. Future researchers can also expand the study materials of geometry, not only to flat-sided geometric shapes but even further to curved-sided geometric shapes and also other subject matters.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.3.135
Pages: 135-145
cloud_download 206
visibility 1264
0
Article Metrics
Views
206
Download
1264
Citations
Crossref
0

...

This study investigates the effectiveness of Guided Inquiry-Based Instruction (GIBI) integrated with Variation Theory in improving grade ten students’ solid geometry achievement in Debre Tabor City, Ethiopia. A quasi-experimental design involving 99 students found in three classes from three government schools assigned them randomly to three groups: Experimental Group 1 (EG1, n=30) received GIBI with Variation Theory, Experimental Group 2 (EG2, n=37) received only GIBI and the Control Group (CG, n=32) followed traditional methods. Pre- and post-tests analyzed using ANCOVA and paired t-tests revealed significant improvements, with EG1 achieving the highest scores (p = .000). Effect sizes were substantial for EG1 (Cohen's d = 1.50) and EG2 (d = 1.39) compared to CG (d = .73). The results highlight that GIBI combined with Variation Theory significantly enhances students’ solid geometry achievement, emphasizing the value of such kind of innovative teaching strategy to foster students’ achievement in similar educational contexts. 

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.4.185
Pages: 185-198
cloud_download 110
visibility 631
0
Article Metrics
Views
110
Download
631
Citations
Crossref
0

...

This study delved into the factors affecting secondary school students’ interest to learn Mathematics. The aim was to gather insights that can inform strategies aimed at enhancing students' engagement, enthusiasm, and achievement in Mathematics education. Literature information was downloaded using databases such as Google Scholar, ERIC, Search 4 Life, Scopus, Web of Science, and Academia. Of the 129 studies obtained, 117 articles were retained after removing duplicates and studies that did not meet the themes of the study. Further filtering of studies by removing primary and higher learning school-related studies allowed the retention of 25 relevant pieces of research published between 2000 and 2024. The results from the systematic reviews analysis showed that instructional strategy, instructional materials, the importance of Mathematics, a future career in Mathematics, students’ attitudes towards Mathematics, students’ enjoyment of Mathematics lessons, teachers and parental support, and students’ perception towards Mathematics, are amongst the key factors affecting positively secondary school students’ interest to learn Mathematics.  

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.5.4.227
Pages: 227-240
cloud_download 155
visibility 1206
0
Article Metrics
Views
155
Download
1206
Citations
Crossref
0

...

This study investigates an integrative instructional model combining Concrete-Pictorial-Abstract (CPA), Task Analysis (TA), and the 3R strategies (relaxation, repetition, and routine) in teaching mathematics to students with learning disabilities (LD). LD is a neurological disorder that affects the capacity to acquire skills in reading, writing, and mathematics, presenting persistent challenges that traditional teaching approaches may not fully address. Through an ethnographic approach involving participatory observation of a teacher and three LD students over a semester, this study examines how the CPA model—progressing from concrete objects to pictorial aids and then to abstract concepts—can be customised to individual needs. Findings highlight that CPA is most effective when adapted to the diverse learning styles of LD students. While one student thrives with tactile tools to reinforce understanding, another becomes distracted, viewing the concrete aids as play items, and a third displays a preference for abstract reasoning without needing pictorial or tangible support. The TA framework, used to deconstruct complex tasks, enables students to engage in incremental learning steps, while the 3R approach helps foster a supportive learning environment by incorporating relaxation, routine, and reinforcement of concepts. By accommodating individual learning preferences, teachers can support diverse cognitive processes and promote meaningful progress in mathematical understanding. The study calls for educators to move beyond conventional one-size-fits-all strategies, advocating for personalised and adaptive approaches that can better meet the unique needs of LD students in mathematics education.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.1.51
Pages: 51-64
cloud_download 53
visibility 197
0
Article Metrics
Views
53
Download
197
Citations
Crossref
0

...

This study examines the validity of the Force Concept Inventory (FCI) in Ugandan secondary schools using Item Response Curves (IRCs) and provides a comparative evaluation of its effectiveness across different educational contexts. The survey focused on Senior Four students preparing for the Uganda Certificate of Education (UCE) examinations, with a representative sample of 941 students (aged 15–17) selected through a multi-stage sampling technique. The initial analysis employed Classical Test Theory (CTT) metrics before the detailed analysis of IRCs for the FCI items. The CTT evaluates item-level and whole test statistics like item difficulty level, discrimination index, and reliability. The CTT indices revealed that the FCI was highly challenging, with an average score of 5.76 out of 30 and a low-reliability coefficient (α = 0.15). Additionally, 73.3% of the items showed poor discrimination, and some distractors were ineffective. The detailed analysis of IRCs showed that several FCI items are inefficient in the context of the Ugandan education system. The IRCs also demonstrated a widespread choice of distractors for many items, with overall scores falling below the threshold indicative of a generally agreed-upon understanding of Newtonian physics. Comparative analysis from other global contexts studies suggests that language barriers, curriculum differences, and instructional methods influence student performance. These findings underscore the necessity of adapting the FCI tool to better fit local educational contexts and implementing additional instructional strategies to enhance conceptual understanding. A more culturally and contextually adapted diagnostic tool may improve physics education and better assess students’ conceptual comprehension of force and motion within the region.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.2.79
Pages: 79-95
cloud_download 51
visibility 231
0
Article Metrics
Views
51
Download
231
Citations
Crossref
0

...

This study explores how mentor teachers in specialized teaching areas, particularly chemistry, interact in an Online Professional Development (OPD) program. The Mentor Teacher Professional Development (MeT-PD) program was designed to improve mentoring practices by creating opportunities for collaborative learning through various online activities, such as Individual Response (IR), Interactive Individual Response (IIR), Small Group Discussions (SGD), and Large Group Discussions (LGD). Using a qualitative case study approach, the research analyzed data collected from Zoom recordings and Nearpod activity logs. The findings indicate that while LGDs were useful for interactions between facilitators and learners, they were not as effective in fostering interaction among learners themselves, mainly due to the cognitive demands and how these discussions were structured. On the other hand, SGDs seemed to foster stronger participant interaction, probably because the smaller group settings led to more valuable exchanges. These findings highlight the need of thoughtful planning of OPD activities, with particular focus on group size management and selection of suitable discussion formats to improve both interaction and learning outcomes.

description Abstract
visibility View cloud_download PDF
10.12973/ejmse.6.2.137
Pages: 137-146
cloud_download 37
visibility 96
0
Article Metrics
Views
37
Download
96
Citations
Crossref
0

...