' quadratic equation.' Search Results
An Analysis of Errors and Misconceptions in the Study of Quadratic Equations
error misconception quadratic equation...
This study attempts to investigate the errors and misconception that form three students reveal using symbolic equation and word-problem representations. The participants were thirty form three students, from a high school in Zimbabwe. Three mathematics teachers from the same school also took part. Data was collected from the students through a questionnaire, a test, follow up interviews and semi-structured interviews. Semi structured interviews were also conducted with the three mathematics teachers. In data analysis, the students’ written responses and data from questionnaire were qualitatively analysed to determine the nature of the students’ errors when solving quadratic equations. The results revealed that the students had difficulties in solving symbolic quadratic equations by the factorisation method as well as the use of the quadratic formula such that many misconceptions were exposed. The following types of errors were revealed: conceptual, procedural and technical. It was found out that it is an advantage for teachers to teach students with the knowledge of these errors in an effort to eliminate them.
0
Effectiveness of Semiosis for Solving the Quadratic Equation
de saussure model effectiveness peirce model quadratic equation semiosis...
The study examines the effectiveness of employing semiosis in the teaching and learning of the Quadratic Equation. The first goal is to compare results of De Saussure and Peirce models within the semiotic theory. The second goal is to determine the commonest effective semiotic objects student teachers mostly employ to solve for the roots in quadratic equations. This research method was mixed methods concurrent and adopted both quantitative and qualitative approach. The instruments for the study were teacher-made tests and interview guide structured on the likert scale. In the teacher-made tests, two sets of twenty questions were set and distributed to the respondents. The sets of questions were similar and each twenty questions were based on De Saussure and Peirce Semiotic Models. The analyses employed both quantitative and qualitative. In the quantitative analysis, three categorical independent variables were fixed on and Pierre and De Saussaure models, objects of Pierre and De Saussaure models, and diachronicity, trichronicity, categorization and quadratic equations, after satisfying normality and independent assumptions of t-test and ANOVA techniques. The qualitative analysis with ensured anonymity, confidentiality and privacy of respondents and transcribed responses from semi-structured interview guide. The results of the commonest semiotic objects improved significantly classroom interactions with Peirce model than with De Saussure model. They perceived the Peirce model as being broader, comprehensive, universal and ICT-compliant. We therefore recommended further quasi-experimental studies on semiotic objects to improve upon the use of cultural objects.
0